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Abstract

A maximum likelihood (ML)-based approach has been established for the direct extraction of NMR parameters
(e.g., frequency, amplitude, phase, and decay rate) simultaneously from all dimensions of aD-dimensional NMR
spectrum. The approach, referred to here as HTFD-ML (hybrid time frequency domain maximum likelihood),
constructs a time-domain model composed of a sum of exponentially-decaying sinusoidal signals. The apodized
Fourier transform of this time-domain signal is a model spectrum that represents the ‘best fit’ to the equivalent
frequency-domain data spectrum. The desired amplitude and frequency parameters can be extracted directly from
the signal model constructed by the HTFD-ML algorithm. The HTFD-ML approach presented here, as embodied
in the software package CHIFIT, is designed to meet the challenges posed by model fitting ofD-dimensional NMR
data sets, where each consists of many data points (108 is not uncommon) encoding information about numerous
signals (up to 105 for a protein of moderate size) that exhibit spectral overlap. The suitability of the approach is
demonstrated by its application to the concerted analysis of a series of ten 2D1H-15N HSQC experiments measur-
ing 15N T1 relaxation. In addition to demonstrating the practicality of performing maximum likelihood analysis on
large, multidimensional NMR spectra, the results demonstrate that this parametric model-fitting approach provides
more accurate amplitude and frequency estimates than those obtained from conventional peak-based analysis of the
FT spectrum. The improved performance of the model fitting approach derives from its ability to take into account
the simultaneous contributions of all signals in a crowded spectral region (deconvolution) as well as to incorporate
prior knowledge in constructing models to fit the data.

Introduction

The extraction of primary NMR parameters (e.g., fre-
quency, amplitude, phase, and decay rate) from the
acquired free induction decay (FID) is a prerequisite to
further NMR data analysis. The traditional first step in
this process is Fourier transformation (FT) of the FID
into a suitably apodized and phase-corrected absorp-
tion spectrum (for a review see Hoch and Stern, 1996).
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Subsequent to this step, frequencies for desirable sig-
nals are typically obtained from interpolation of peaks
whose heights exceed a specified threshold. Typically,
the signal intensities are estimated either from the peak
height or the integral of the peak, depending upon the
experimental context.

Accurate estimation of signal intensities from
peak height or peak integral measurements requires
that nearby signals have negligible overlap in the
frequency-domain spectrum. This requirement of-
ten is not met in NMR spectra of large molecules,
where the signals have relatively broad linewidths.
When working with multidimensional spectra (par-
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ticularly 3D and 4D), the problem of spectral over-
lap is exacerbated by the application of apodiza-
tion functions along the indirectly-detected dimen-
sions. One approach to remedying the problem of
poor frequency resolution involves extrapolating the
time-domain data along the indirectly-detected dimen-
sions to yield a resolution-enhanced spectrum upon
subsequent Fourier transformation. Reported meth-
ods for extrapolation of the time-domain FID in-
clude linear prediction serially in one dimension (Ges-
mar and Led, 1989; Kay et al., 1992; Miller and
Greene, 1989), 2D linear prediction (Zhu and Bax,
1992),n-dimensional Bayesian (Chylla and Markley,
1993), andn-dimensional maximum likelihood (ML)
analysis (Chylla and Markley, 1995). Another ap-
proach is the direct replacement of the low-resolution
data spectrum with one of greater resolution derived
from frequency-domain maximum likelihood analysis
(Wang et al., 1994) or maximum entropy reconstruc-
tion (Sibisi et al., 1984). Although these approaches
employ different means of producing a resolution-
enhanced absorption spectrum, they all ultimately rely
upon peak-based measurements to obtain frequency
and amplitude estimates.

Recent efforts have focused upon obtaining NMR
parameter estimates from parametric signal models, as
opposed to measurements of peak attributes. Model-
based approaches that attempt to ‘fit’ the acquired
experimental data to analytical signal functions pro-
vide a means for direct parameter extraction from the
optimized signal models. The simultaneous contribu-
tions of numerous signals can be calculated by such
methods, thus allowing one to obtain greater accu-
racy in parameter estimates when signals overlap in
the frequency spectrum. Model-based methods have
the additional advantage of providing a more system-
atic, automated approach to NMR parameter extrac-
tion. Two parametric approaches have been reported
for estimating NMR parameters from one-dimensional
time-domain data: Bayesian probability theory (Bret-
thorst, 1990; Fitzgerald et al., 1995) and use of the
maximum likelihood principle (Miller and Greene,
1989; Umesh and Tufts, 1996).

The practical application of a model-based ap-
proach to parameter estimation from large,D-
dimensional NMR spectra is a non-trivial exercise.
Our previous approach (Chylla and Markley, 1995)
to applying the maximum likelihood (ML) principle
to parameter extraction fromD-dimensional time-
domain data was limited to modeling subsets of aD-
dimensional experiment. For each data point along the

acquisition dimension, a signal model was constructed
to fit the corresponding (D-1)-dimensional FID. The
signal models derived from this analysis were used to
extrapolate each of the (D−1)-dimensional FIDs with
synthetic data points prior to Fourier transformation,
but only portions of the entireD-dimensional data set
could be modeled.

We describe here an approach for applying the
maximum likelihood principle to the extraction of
NMR parameterssimultaneouslyalong all dimen-
sions of aD-dimensional NMR spectrum. In this
approach, line shapes present in the frequency-
domain NMR spectrum are modeled by curves de-
rived from theoretical time-domain signals (such as
exponentially-decaying exponentials) that have been
truncated, apodized, and Fourier transformed in the
same manner as the time-domain NMR data. The
proposed approach, referred to here as a hybrid time
frequency-domain maximum likelihood (HTFD-ML)
method, meets the challenges posed by model fit-
ting of D-dimensional NMR data, i.e., large data
sets (up to 109 data points) composed of numerous
(up to 105) partially-overlapped signals. We present
the theory and implementation of the HTFD-ML al-
gorithm and illustrate how it can be applied to the
concerted analysis of a series of 2D1H-15N HSQCT1
relaxation experiments carried out on a medium sized
soluble protein (the carbon monoxide ligated form of
the monomeric hemoglobin component IV, GMH4CO,
from Glycera dibranchiata, 147 amino acids). The
goals were (1) to test the practicality of the HTFD-
ML approach for the analysis of multidimensional
NMR data from a macromolecule in a situation where
quantitative information about signal frequencies and
amplitudes is essential, and (2) to compare the results
with those of conventional analysis of the relaxation
data.

Materials and Methods

Sample preparation

Glycera dibranchiata component IV monomeric
hemoglobin (GMH4) was overexpressed and uni-
formly 15N-labeled inEscherichia coli, purified and
reconstituted with b-type hemin as described previ-
ously (Alam et al., 1998). The reduced CO-ligated
form of GMH4 (GMH4CO) was produced by re-
duction of pure ferric GMH4 with an excess of
sodium dithionite.15N relaxation measurements were
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performed on a sample of uniformly15N -labeled
GMH4CO (3.5 mm), buffered in 100 mm potassium
phosphate, 100 mm KCl, pH 5.0 in 90% H2O/10%
D2O.

NMR spectroscopy

15N T1 values were measured at 750.13 MHz1H fre-
quency with a pulse scheme that utilized gradients for
sensitivity enhancement and selective pulses for water
flip-back (Farrow et al., 1994). All spectra were ac-
quired with 16 scans per FID, 200 complex (200∗) 15N
points and 1024 complex (1024∗) 1H points. Spec-
tral widths were 10 000 Hz in the1H dimension and
2500 Hz in the15N dimension.T1 values were ob-
tained with relaxation delaysT = 10, 60, 120, 200,
400, 800, 1400, and 2200 ms. Duplicate spectra were
recorded atT = 10 and 200 ms for making precision
estimates.

Noise added to synthetic spectra

Noise added to synthetic spectra was generated by col-
lecting data without a sample at 500.13 MHz using
a single ‘hard’ proton pulse. The noise was Fourier
transformed using the same digital filters and zero-
filling properties that were used to transform the cor-
responding synthetic data. The entire noise data set
was then multiplied by a constant before being added
to the synthetic frequency-domain spectra. The value
of the constant was chosen to produce the desired
signal-to-noise ratio of the spectral simulation.

Peak measurements

Measurements of peak position along each dimension
were derived from a three-point parabolic interpola-
tion of the extremum and its two adjacent frequency-
domain values along each dimension. The quadratic
coefficients (a,b,c) of a parabola (ax2 + bx + c) that
‘passes through’ three equally spaced points, with
values of (p0,p1, p2), are given, respectively, by
(p0+p2−2p1

2a ,
p2−p0

2 , p1).
The position of the peak was obtained from the

position of the maximum of the parabola,χmax, given
by (−b/2a). The peak height is given by(ax2

max +
bxmax+ c).

To minimize systematic overestimation of peak in-
tegrals caused by overlap among closely-spaced peaks
in the frequency spectrum, all peak integrals were cal-
culated as a simple sum over a fixed number of points
centered about the peak maximum. The number of

points was chosen to be 3/2 the average width of a
peak at half-height.

Maximum likelihood analysis

Maximum Likelihood (ML) estimation of frequency,
amplitude, phase, and decay rate parameters was car-
ried out by a computer program namedCHIFIT using
the approach and algorithm described, respectively, in
the Theory and Algorithm sections. CHIFIT is written
in C++ and runs on Silicon Graphics workstations op-
erating under a version of IRIX 5.3-6.∗. The program
displays its graphics using X-Windows and thus can
be run in a client-server configuration.Chifit reduces
the need for very large amounts of random access
memory (RAM) by loading only those portions of the
spectrum that are actively being modeled. The RAM
requirements depend on the number of signals con-
tained in the data set: 32 MB of RAM suffices for
data sets containing fewer than 103 signals; 128 MB
of RAM is required for 103–104 signals; larger RAM
capacity (∼512 MB) is needed in order to process
data sets with very large numbers of signals ( 105).
The academic version of the software is available from
the National Magnetic Resonance Facility at Madison
(http://www.nmrfam.wisc.edu/software.html), and the
commercial version can be purchased from Spectrum
Research (http://www.specres.com).

Fourier transforms and plotting

Conventional FT processing was performed using
the commercial software package Felix95 (Molecu-
lar Simulations, Inc., San Diego, CA, USA). De-
tails about window functions, zero-filling, and other
processing methods are documented in the appropri-
ate figure legends. The multidimensional data were
loaded and processed into Felix matrices using a sub-
matrix format that is accessed directly by the CHIFIT
software. The contour plots appearing in the figures
were generated by Felix95.

Theory

In previous work (Chylla and Markley, 1995), we
presented a theory for using the maximum likelihood
principle to perform signal analysis of multidimen-
sional time-domain data. The focus of this section is
to present an adaptation of this to HTFD-ML analysis,
and to outline the approach used to implement HTFD-
ML analysis to perform efficient signal recognition
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and parameter estimation on largeD-dimensional
NMR data sets.

Maximum likelihood principle

A fundamental task in signal processing is to deter-
mine what type of model functions should be used to
describe the data and what values should be chosen for
the free parameters of the model. Given a vector ofN
discretely sampled data points in timet

y(t) = [y(t1), y(t2), . . . , y(tN )] 1≤ i ≤ N (1)

where each data pointy(ti) is the sum of a sys-
tematic signal componentf (ti ) and a random noise
componentδ(ti ),

?y(ti) = f (ti)+ δ(ti ) (2)

the systematic component can be described using a
parametric modelf (t | P). The maximum likelihood
(ML) principle expresses the probability of a given
model and set of parametersP in terms of the likeli-
hoodl(f | y, P ). Discarding any terms independent
of P, the log-likelihood log[l(f | y, P )] is given by

log
[
l (f | y, P )] ∝ ( 1

σ2

) N∑
i=1

y(ti)f (ti | P)

−
(

1

2σ2

) N∑
i=1

[
f (ti | P)

]2 (3)

whereσ2 is the variance (a constant that for the time
being is assumed to be known) of the random noise
δ(t). Thus, according to the ML principle, the most
likely set of parametersP given a model and the data
is theP that maximizes log[l(f | y, P )].

Time domain maximum likelihood analysis

The maximum likelihood principle addresses the is-
sue ofparameter estimation, i.e., what values should
be chosen for the set of free parametersP in a speci-
fied model function, but does not directly address the
question ofmodel selection, i.e., what type of model
functionf (P) should be chosen to describe the data.
The choice of appropriate model functions to describe
NMR data depends fundamentally upon whether the
experimental data are modeled in the time domain
(FID) or the frequency domain. A detailed explanation
of a D-dimensional approach to model fitting NMR
data in the time domain has been reported previously
(Chylla and Markley, 1995). The salient aspects of that
theory are reformulated here.

The systematic portion of the signal at a given data
pointf (ti ) is described as the linear combination of a
set of 1≤ j ≤ J signal functionsV (ti | �j) with
non-linear parameters�j

y(ti) =
J∑
j=1

AjV (ti | �j). (4)

Each multidimensional signal functionV (ti | �j)
is the D-dimensional product of a one-dimensional
signal functionU(tid | �jd).

V (ti | �j) =
D∏
d=1

U(tid | �jd)) (5)

whereU(tid | �jd) is given by

U(tid | �jd) = eiωj dtid eiφj dtid e−αjd tid . (6)

The basis functioneiωj dtid is a complex sinusoid as-
sociated with thejth signal along dimensiond. It
has an angular frequency given byωjd . Analogously,
eiφj dtid is a complex phasor with a phase given by
φjd , ande−αjd tid is an exponential with a decay rate
given by αjd . The symboltid represents the time
along dimensiond of the ith data point. Each index
i corresponds to a uniqueD-dimensional time coor-
dinate[ti1, ti2, . . . , tiD]. �jd is the set of non-linear
parameters[ωjd,φjd,αjd ].

If the number of signalsJ and the values for the
non-linear frequency, phase, and decay rate parame-
ters (�j ) of each signal are known, thenV (ti | �j)
can be calculated and the maximum likelihood values
for the amplitudesAj of the signals are given by

∂

(
N∑
i=1
(y(ti)− f (ti))2

)
∂Aj

= 0. (7)

Substitution of the value off (ti) contained in Equa-
tion 4 yields:

∂

(
N∑
i=1

(
yi −

J∑
k=1

AkV (ti | �k)
)2)

∂Aj
= 0 (8)

The solution to the vector of amplitudesAj appear-
ing in Equation 8 is given by the matrix equation

Aje(t)jk = h(t)j , (9)

wheree(t)jk is the ‘interaction matrix’,

e(t)jk ≡
N∑
i=1

V (ti | �j)V (ti | �k), (10)
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andh(t)j is the projection of the data upon the signal
functions,

h(t)j ≡
N∑
i=1

y(ti)V (ti | �j). (11)

The solution vector is found by multiplication of
the projection vectorh(t)j by the matrix inverse of
e(t)jk,

Aj = h(t)j
[
e(t)jk

]−1. (12)

Equation 12 provides an expression for finding the
maximum likelihood amplitudes that are consistent
with the datay(ti), a set ofJ signal functionsV (ti |
�j), and the parameters of each signal,�j . From an
initial estimate ofJ and�j , the maximum likelihood
values forAj can be found by linear least squares
analysis (Equation 12), and the sufficient statistic
h̄2(t) can be calculated according to Equation 13.

h̄2(t) =
J∑
j=1

Ajh(t)j . (13)

The sufficient statistic̄h2(t) is a value that both
maximum likelihood and Bayesian probability the-
ory (Bretthorst, 1990) predict to be an indicator of
the likelihood of the set of non-linear parameters�
(Chylla and Markley, 1995). The most likely� is the
set of values that maximizes̄h2(t). It is more effi-
cient to maximizēh2(t) than to minimize chi squared,
because the former can be calculated directly from
the dot product given by Equation 13. This equation
thus serves as a basis for performing non-linear least
squares optimization of� to achieve the maximum
value ofh̄2(t).

Frequency domain maximum likelihood analysis

If the experimental data are modeled in the frequency
domain, each data pointf (-i ) in the data vector now
represents a discreteD-dimensional frequency coordi-
nate. The appropriate signal functions in the frequency
domain are now Lorentzian functions of the form:

U(-id | �jd) =

Aj

[
e−φjd

γjd

] 1

1− i
γjd
(ωid − ωjd)

 (14)

where�jd = [ωjd,φjd , γjd refers to the respective
angular frequency, phase, and linewidth of signalj
along dimensiond.

In all other respects, frequency-domain ML analy-
sis is analogous to time-domain analysis: i.e., Equa-
tions 7–13 are still applicable. As with time-domain
analysis, the sufficient statistic is calculated for a set
of J signals with known�jd and can be used as
a basis for non-linear optimization of each�jd =
[ωjd,φjd, γjd ].

Hybrid time-frequency domain maximum likelihood
(HTFD-ML) analysis

In this section we present an approach that involves
elements of both time and frequency domain analysis.
We briefly evaluate the strengths and limitations of
the two methods and discuss why a hybrid approach
seems appropriate for the practical application of max-
imum likelihood analysis to largeD-dimensional data
sets.

The strengths of time-domain analysis are the ap-
propriateness of its model functions for describing
the data and the amenability of the method to the
use of weighting functions. Weighting functions are
useful for either increasing signal-to-noise ratios or in-
creasing frequency resolution. Figure 1 illustrates the
differences in resolution obtained by applying differ-
ent apodization functions to the same synthetic data
set which contains three signals with added random
noise. One of the signals is isolated in frequency space,
and the other two form a closely spaced pair. The pa-
rameters associated with this three-signal model are
given in Table 1. The absorption spectrum obtained
by processing the synthetic FID with a shifted cosine-
squared-bell weighting function (Figure 1B) shows far
better frequency resolution than that obtained with
a pure cosine-squared-bell weighting function (Fig-
ure 1A). Resolution-enhancing apodization functions
such as that used in Figure 1B can be applied readily to
the data and to the basis functions of Equation 6 when
using a time-domain maximum likelihood approach.

The central weakness of time-domain analysis is
that its basis functions are delocalized such that an
accurate projection of the data upon the basis func-
tions requires calculation of multidimensional dot
products over the entire data set. Although this fact
does not prevent practical application of time-domain
ML analysis to 1D NMR data sets and smallD-
dimensional NMR data sets with few signals (Chylla
and Markley, 1995), the computational cost of these
dot products becomes prohibitive when the size of the
data set surpasses 105 points or when the number of
signals surpasses 103. Any attempt to reduce the size
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Figure 1. Absorption spectra consisting of three theoretical sig-
nals with added noise. A synthetic time-domain FID of length
512 complex points was constructed from the sum of three expo-
nentially-decaying sinusoidal signals as described in Table 1. (A)
Spectrum derived from the synthetic FID by application of a 90◦
shifted sine-squared bell window function (512 complex points) and
zero-filling (to a length of 1024 complex data points) prior to Fourier
transformation. (B) Spectrum derived in the same manner except
that the window function was shifted by 60◦. Comparison of the
spectra in A and B clearly shows the utility of resolution-enhancing
functions in resolving closely spaced signals.

of the dot products by calculating the projection of the
basis functions over just a portion of the data set will
result in a loss of frequency resolution. The nature of
the time-domain signal is that its frequency informa-
tion is distributed evenly over the full span of the FID
(delocalization).

In contrast to time-domain ML analysis, the in-
formation about a particular signal in the frequency-
domain absorption spectrum is heavily localized
around the frequency coordinate corresponding to

Table 1. Parameters used in producing a synthetic model free induction
decay (FID) containing three signalsa

Signal number Amplitude Frequency (/Hz) Line width (/Hz)

(/arbitrary unit)

1 100 −200 17

2 32 200 15

3 16 194 16

a A synthetic time-domain FID of length 512 complex points was
constructed from the sum of three exponentially-decaying sinu-
soidal signals using the parameters shown above: random noise
was added to the synthetic FID.

Figure 2. Definition of the ‘optimization’ and ‘signal’ regions. The
figure shows how the sizes of the signal (ρj · r̂d ) and optimization
(ρj · rd ) regions along a given dimensiond are derived from the
width of the corresponding peakj at half peak height (ρj ·wd ).

the angular frequency of the signal. Consequently,
a strength of frequency domain analysis is that the
information about the amplitude of a signal can be
approximated very accurately by a projection of the
Lorentzian basis function over only a small portion
of the entire spectral width. The time (tc) required
to computehj (Equation 11) is linearly proportional
to the size of the data set. The reduction intc of
frequency-domain analysis vs. time domain analysis
is thus given by

tc ∝
D∏
d=1

(
rd/r̂d

)
(15)

whererd is the ‘optimization region’ along dimension
d, andr̂d is the full spectral width along dimensiond
(see Figure 2). The fractional reduction intc is exper-
iment specific, but is of the order of 10−2–10−4 for
D = 2 and 10−3–10−6 forD = 3.

A significant drawback of a pure frequency-
domain approach is that the closed-form expression
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for a discrete Lorentzian (Hoch and Stern, 1996, p. 30)
is only a valid basis function to describe the frequency-
domain spectrum if the time-domain data have been
sampled uniformly and have been digitally filtered
with exponential weighting functions. This limitation
is noteworthy in cases where it is desirable to use digi-
tal filters that increase frequency resolution. As shown
in Figures 1A–1B, the use of such non-exponential
weighting functions can be strongly advantageous for
processing overlapped spectra. Because the shape of
the signal in the frequency domain is determined by
the characteristics of the time-domain processing (uni-
form vs. non-uniform data sampling, type of window
function, extent of zero-filling, etc.), the analytical
frequency-domainbasis functions in a pure frequency-
domain approach must be modified to model the
signal characteristics (line shapes) produced by each
processing procedure.

Taking these considerations into account, it is de-
sirable to adopt an approach that combines strengths of
both the pure time domain and pure frequency-domain
methods. Since the Fourier transform is a linear op-
eration, the peak height (or integral) of a signal in
the frequency domain is linearly proportional to its
amplitude in the time domain. The calculation ofhj
(Equation 11) using the time domain basis functions
U(ti | �jd) (Equation 6) can thus be approximated
accurately by the process described as follows.

Let F [s(t)] denote a digital operator that trans-
forms a 1D complex time-domain vectors(t) into a
phase-sensitive absorption spectrums(-).

F [s(t)] = s(-). (16)

This operator can be extended to theD-
dimensional case by defining aD-dimensional oper-
ator that consists of a series ofD separateF [s(t)]
operators applied consecutively along each dimen-
sion. For the remainder of this section, we will limit
our discussion to the one-dimensional case to avoid
cumbersome notation.

Let F̂ [s(t)] refer to a specificF [s(t)] operator that
transforms the discrete time-domain FIDy(t) into the
discrete frequency domain spectrumy(-):

F̂ [y(t)] = y(-). (17)

TheF̂ [s(t)] operator can also be used to transform
the discrete time-domain basis functionsU(t | �jd)
into discrete frequency-domain basis functionsU(- |
�jd):

F̂
[
U(t | �jd)

] = U(- | �jd). (18)

In the algorithm described in the following section,
theF̂ (t) operators consist of the following operations:

(1) Multiplying the complexs(t) by an apozidation
function υ(t) of length ld (ld is usually just the
length ofs(t)).

(2) Zero-filling the data fromld to a lengthlf such
thatlf is a power of two andlf ≥ 2ld .

(3) Fourier transforming the data using a Fast Fourier
(FFT) algorithm.

(4) Extraction of the real portion of the data to form a
vectors(ω) of lengthlf .

As a consequence of the linearity ofF̂ (s(t)), the
systematic portion of the frequency domain signal
y(-i) can be described by:

y(-i) =
J∑
j=1

AjV (-i | �j) (19)

where

V (-i | �j)i =
D∏
d=1

U(-id | �jd) (20)

andU(-id | �jd) is given by Equation 18. The maxi-
mum likelihood amplitudesAj can now be found from
the solution of the matrix equation:

Aje(-)jk = hj (-) (21)

where

e(-)jk ≡
N∑
i=1

V (-i | �j)V (-i | �k) (22)

and

hj (-) ≡
N∑
i=1

y(-i )V (-i | �j). (23)

A new sufficient statistic,h̄2(-), can now be
formulated.

h̄2(-) =
J∑
j=1

Ajhj (-). (24)

The reformulation of the sufficient statistic in
Equation 24 allows non-linear optimization of the pa-
rameters in the time-domain basis functionsU(t |
�jd) (Equation 6) using the frequency-domain pro-
jections defined by Equation 23. The advantage of this
reformulation becomes apparent if the basis function
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of lengthnd is truncated to the lengthrd . This sub-
stantially reduces the timetc (Equation 15) required
to compute the sufficient statistic without a signifi-
cant loss in signal information. When the data are
multidimensional, the reduction in time required to
calculatee(-)jk for a set of smaller basis functions
V ′(- | �jd) and to project the basis functions over
the corresponding reduced data set more than com-
pensates for the additional time required to Fourier
transform the basis functions (Equation 18).

Algorithm for HTFD-ML analysis of
multidimensional NMR data

A software application namedCHIFIT, which is writ-
ten in C++ and runs under IRIX 5.3–6.4, implements
the algorithm that incorporates the theoretical formu-
lations of HTFD-ML analysis described in the pre-
ceding section and in our earlier work (Chylla and
Markley, 1995).

(1) A phase sensitive absorption spectrumy(-) is
created from conventional Fourier processing of
the time-domain datay(t). The υ(t) window
functions and zero-filling properties along each
dimension define a Fourier operatorF̂ [s(t)].

(2) To record the general signal characteristics of the
spectra, a set ofJ ‘trial signals’ is found in the
spectrum. Any non-overlapped signal with good
signal-to-noise characteristics is a suitable mem-
ber for the set of trial signals. Peaks corresponding
to these signals are located in the spectrum. In the
context of the CHIFIT algorithm, a peakpj is any
discrete point in the absorption spectrum which
has an extremum whose absolute value (a) is
above a required threshold, and (b) is greater than
any point contained within theD-dimensional re-
gion formed by the center of the peakpj · cd and
the half-peak widthpj ·wd along each dimension
1 ≥ d ≥ D, wherepj · cd is obtained from a 3-
point parabolic interpolation of the points adjacent
to the center (along dimensiond), andpj · wd
is derived from the interpolated width ofpj at
half-height (along dimensiond).

(3) Two regions, an ‘optimization’ and a ‘model’ re-
gion (rj andr̂j respectively), are defined for each
signal j associated with peakpj (Figure 2). The
optimization regionrj is the product of all points
defined by a segmentrjd along each dimension

rj ≡
D∏
d=1

rjd (25)

whererjd is the set of points given by

rjd ≡
{
kjd
}
(cjd − 2wjd) ≤ kjd

≤ (cjd + 2wjd). (26)

The larger model region,̂rj , is given by

r̂j ≡
D∏
d=1

r̂jd (27)

r̂jd ≡
{
k̂jd

}
(cjd − 16wjd) ≤ k̂jd

≤ (cjd + 16wjd). (28)

(4) Appropriate sinusoidal basis functions are chosen
to describe the signal along each dimension. If the
absorption spectrum is well phased along dimen-
sion d, then the phasor basis function is omitted
from U(tid | �jd (Equation 6). Similarly, if the
data are acquired with ‘constant-time’ evolution
periods along dimensiond, then the exponential
decay function may be omitted fromU(tid | �jd).

(5) The frequency, phase (if applicable), and decay
rate (if applicable) parameters along each dimen-
sion are set to their initial values. The starting
frequency values are the angular frequencies cor-
responding to positioncjd in the frequency spec-
trum. The phases are initialized to zero. The decay
rates are initialized to an arbitrary value of−0.01
which is equivalent to a linewidth that is 0.01 of
the sweep width along the relevant dimension.
Because the trial signals are isolated from other
signals in the spectrum, the ability to find the
maximum likelihood value of the decay rate para-
meters is insensitive to the accuracy of the initial
decay rate estimates.

(6) Given the�jd =
[
ωjd,φjd, γjd

]
obtained from

the previous step, the basis functions for trial
signal j along dimensiondU(tid |�jd) can be
calculated according to Equation 6.

(7) The frequency-domain basis functions,U(-d |
�jd), are obtained from applying the correspond-
ing F̂ operators to the time-domain basis func-
tionsU(td | �jd . The resulting basis functions are
truncated along each dimensiond from a length
of nd to the corresponding lengthrjd (Equa-
tion 26) to obtain the truncatedD-dimensional
basis function,V ′(-i | �j).

(8) The sufficient statistic̄h2 and the set of maximum
likelihood amplitudesAj consistent with the data
andV ′(-i | �j) are obtained from Equations 21–
24.
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(9) For any set of�j associated with the set of
signals,h̄2 can be calculated according to steps
3–8. The set of truncated basis functions which
comprise the current model form a series of sig-
nal networks with each network containing a set
of one or more overlapping signals. A gradient-
search algorithm is applied to find the set of�j
in each network which maximizes the localh̄2.
The gradient-search algorithm employs a mod-
ified Marquardt approach (Marquardt, 1963) to
find the local maximum in thēh2 that exists in
the vicinity of the parameter space determined by
each network’s set of�j .

(10) The set of trial signals and their associated� are
used to derive a set of trial model characteris-
tics that are used to analyze the remaining signals
contained in the data set.

(11) A threshold valueτmin (the minimum absolute
value that a peak must have in the absorption
spectrum for its corresponding signal to be mod-
eled) is selected by the user on the basis of visual
inspection of the absorption spectrum.

(12) A D-dimensional signal model is constructed
from the current set of model signals. Initially,
the set of model signals will be just the trial
signals obtained from steps 1–10. The signal
model is formed by the linear combination of the
amplitude-weighted, truncated frequency-domain
basis functions associated with each model signal.
The region associated with each signal, however,
is not the ‘optimization region’ (Equations 25–
26) but the larger ‘model region’ (Equations 27–
28). The signal model is subtracted from the
frequency-domain data to yield a residual spec-
trum.

(13) All peaks that satisfy the threshold and overlap
criteria defined in step 2 are located in the resid-
ual spectrum. The peaks must have an extremum
whose absolute value is greater thanτmin and is
also greater than the value of any points within
the region defined by the center of the peak and
the trial peak width̄ρ ·wd (see Table 2) along each
dimensiond.

(14) A signal j is constructed for each peak obtained
from step 13. The signal is assigned an optimiza-
tion region (rj ) and a model region (r̂j ) on the
basis of the peak centerρj · c and the trial peak
width ρ̄ ·w. The form of the basis functions for the
nascent signals are the same as those chosen for
the set of trial signals. The frequency coordinate
of the signal is initialized to the angular frequen-

cies corresponding toρj · c. Any phase and decay
rate parameters (as well as their constraints) are
initialized to the trial phase and decay rate para-
meter values that are obtained from optimization
of the trial signals.

(15) Steps 6–9 are used to perform linear optimization
of the amplitudes and non-linear optimization of
the parameters associated with these signals and
all other signals currently contained in the signal
model.

(16) The algorithm loops back to step 12 and cy-
cles through steps 12–15 until no additional valid
peaks are obtained in step 13.

Results

Application to a 1D synthetic spectrum

The synthetic 1D model spectra, whose stepwise
analysis by application of the HTFD-ML algorithm is
depicted in Figure 3, contain a spacing of 4 Hz be-
tween signals 2 and 3 (the spectra in Figure 1 have
a spacing of 6 Hz between peaks 2 and 3, but other-
wise are identical). The upper right panel is a plot of
the initial CHIFIT model, which contains no signals.
The residual corresponding to this initial condition is
simply the input spectrum (upper left panel).

The first stage of peak picking finds evidence for
two signals. The frequency estimates for these signals
are obtained from parabolic interpolation of the peak
maxima. The initial decay rates for the two signals
are assigned an arbitrary value of−0.01. Amplitude
estimates consistent with these frequency and decay
rate values are obtained from steps 6–8 of the algo-
rithm described in the previous section. Holding the
frequency estimates constant, the maximum likelihood
values for the decay rates for this two-signal model
are obtained from optimization of the sufficient sta-
tistic as described in step 9. The two-signal model,
with optimized amplitudes and decay rates, is shown
in the middle right frame of Figure 3. The correspond-
ing residual is shown in the middle left frame. This
residual spectrum contains evidence for an additional
signal which is added to the model. The three-signal
model (not shown) obtained after optimization of the
decay rates of all three signals yields a residual that
does not contain evidence for another signal. A final
optimization of both the decay ratesand the frequen-
cies for all three signals is performed and yields the
optimized model shown in the lower right frame of
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Table 2. Analysis of errors in (top) frequency and (bottom) amplitude parameters extracted
from a one-dimensional synthetic data set by HTFD-ML analysis and by conventional peak
analysisa

Frequency parameters

Symbol Description Error (/Hz) Error (/Hz)

from ML from Peak

Analysis Analysis

A-F1 Accuracy of frequency 1 for all spectra 0.007 0.016

A-F2 Accuracy of frequency 2 for all spectra 0.086 0.082

A-F3 Accuracy of frequency 3 for all spectra 0.187 0.268

A-LRF3 Accuracy of frequency 3 for all low resolution 0.364 0.603

spectra

A-LSF3 Accuracy of frequency 3 for all spectra with 0.398 0.448

low sensitivity

P-F1 Precision of frequency 1 for all spectra 0.007 0.009

P-F2 Precision of frequency 2 for all spectra 0.070 0.068

P-F3 Precision of frequency 3 for all spectra 0.151 0.206

P-LRF3 Precision of frequency 3 for all low 0.130 0.147

resolution spectra

P-LSF3 Precision of frequency 3 for all spectra with 0.378 0.442

low sensitivity

Amplitude parameters

Symbol Description Error Error from

from ML Peak

Analysis Analysis

(/%) (/%)

A-A2 Accuracy of A2/A1 for all spectra 7.9 16.3

A-A3 Accuracy of A3/A1 for all spectra 8.0 22.4

A-LRA3 Accuracy of A3/A1 for all low resolution 20.1 102.8

spectra

A-LSA3 Accuracy of A3 /A1for all spectra with low 13.1 23.4

sensitivity

P-A2 Precision of A2/A1 for all spectra 4.2 2.2

P-A3 Precision of A3/A1 for all spectra 4.7 3.7

P-LRA3 Precision of A3/A1 for all low resolution 4.9 2.9

spectra

P-LSA3 Precision of A3/A1 for all spectra with low 11.0 9.8

sensitivity

a A set of 256 different synthetic data sets was constructed as described in the text. To
each of the 256 data sets, a series of 8 different noise spectra was added to create a total
of 2048 data sets. HTFD-ML analysis was conducted on each of the 2048 data sets.

b The term ‘accuracy’ as used here in the context of frequency estimates represents the
standard deviation of the estimated frequencies (obtained for each of the 8 data sets)
from the known frequency value. The term ‘precision’ as used in this context represents
the standard deviation of the estimated frequencies (obtained for each of the 8 data sets)
from the mean frequency value.

c The amplitude estimates of signals2 and 3 obtained from ML analysis were derived
from the ratio of the respective amplitudes to the amplitude of signal1. The amplitude
estimates of signals2 and3 obtained from peak analysis were derived from the ratio of
the respective peak areas to the peak area associated with signal1. The term ‘accuracy’
as used here in the context of amplitude estimates represents the standard deviation of the
estimated amplitude ratio (obtained for each of the 8 data sets) from the known amplitude
ratio. The term ‘precision’ as used in this context represents the standard deviation of the
estimated amplitude ratio (obtained for each of the 8 data sets) from the mean amplitude
ratio.
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Figure 3. HTFD-ML analysis of a 1D synthetic data set. The figure shows three pairs of residual and model spectra associated with the analysis
of the synthetic data set described in Table 1. (Top pair) At the starting point of the analysis, the model contains no signals, and the residual
spectrum is simply equivalent to the absorption spectrum of the synthetic data. (Middle pair) The signal model (right) and residual (left) derived
from the first round of HTFD-ML analysis. The first round of peak analysis yields two resolved signals. Using the algorithm described in
the text, the amplitude and decay rate parameters of the signals derived from these peaks are optimized to fit the data. The residual contains
evidence for another peak; the signal derived from this peak is added to the signal model in the next round. (Bottom pair) The signal model and
residual at the end of the second round of HTFD-ML analysis; the amplitude, frequency, and decay rate parameters of the three signals in the
have been optimized to minimize the residual.
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Figure 4. Error analysis of (top) frequency estimates and (bottom) amplitude estimates obtained from HTFD-ML analysis (light shaded bars)
and peak analysis (dark shaded bars) of a series of 1D synthetic data sets (Table 2).

Figure 3. The corresponding residual is shown in the
lower left frame.

To obtain a quantitative comparison of the preci-
sion and accuracy of both the frequency and amplitude
estimates obtained from HTFD-ML analysis versus
peak analysis, a matrix of 16× 16 = 256 synthetic
1D spectra was created, in which each spectrum was
similar to the three-signal spectrum whose parameters
are displayed in Table 1. The parameters of signals
2 and 3 were chosen to provide a range of 16 dif-
ferent frequency resolutions (difference in frequency
between signals2 and 3) and 16 signal sensitivities
(ratio of the amplitudes of signals2 and 3 versus the
noise ). Over a range of 16 discrete values, the ampli-
tudes of signals2 and3 were decreased linearly from
respective values of 32 and 16 to respective values of 2
and 1 (arbitrary units). The standard error of the noise
was kept constant over the range thus producing a set
of sixteen steadily decreasing signal-to-noise ratios.
In some of the spectra, the presence of signal3 was
not clearly discernible from the noise. These spectra

are referred to as ‘low sensitivity’ spectra. Along with
changes in sensitivity, the frequency of signal2 was
decreased linearly from a value of 211 Hz to 196 Hz
thus yielding a frequency separation between signals
2 and3 that ranged from 19 Hz to 4 Hz. In some of
these spectra, signal3 was not clearly discernible from
signal2 (see Figure 3). These spectra are referred to as
‘low resolution’ spectra. The matrix of 16×16= 256
synthetic spectra thus contained a full range of sensi-
tivity and resolution combinations. For each of these
256 synthetic models, eight different spectra were cre-
ated by adding eight different sets of random noise
to the model. To ensure that the random noise ac-
curately reflected the characteristics of spectrometer
noise, the noise added to the synthetic data was ob-
tained from processed spectra of FID’s recorded on
an NMR spectrometer (see Methods). The addition of
eight data sets with different noise components and
identical systematic components yielded a final matrix
of 16× 16× 8= 2048 data sets.



289

Figure 5. Percentage of signals resolved from HTFD-ML analysis
(light shaded bars) and peak analysis (dark shaded bars) of a series
of 1D synthetic data sets. A set of 256 different synthetic data sets
were constructed as described in Table 2. A portion of the data
sets contained very poor resolution (LR) between signals2 and3.
Another portion of the data had a low signal-to-noise ratio (low
sensitivity, LS) associated with signal3. The bar graphs displayed
above represent the percentage of low resolution (LR) and low sensi-
tivity (LS) spectra in which signals1–3were resolved. In the context
of HTDF-ML analysis, signal3 was considered to be resolved if the
residual contained sufficient evidence for a signal after a two-signal
model had been constructed to model the data. In the context of peak
analysis, signal3 was considered to be resolved from signal2 if two
extrema were present in the corresponding region of the spectrum
(see Figure 1).

Each of the 2048 data sets was analyzed by both
HTFD-ML and by peak analysis. A summary of the
error analysis of the frequency estimates is shown in
Table 2 (top) and graphed in Figure 4 (top). The data
give a comparison between the accuracy and the preci-
sion of the frequency estimates for HTFD-ML analysis
and peak analysis. The term ‘accuracy’ as used in this
context represents the standard deviation of the esti-
mated frequencies (obtained for each of the eight data
sets) from the known frequency value. The term ‘pre-
cision’ as used in this context represents the standard
deviation of the estimated frequencies (obtained for
each of the eight data sets) from the mean frequency
value.The error analysis of the frequency estimates
for signals1–3 is shown averaged over all data sets
as well as over subsets of the data containing signals
of low resolution and low sensitivity (see Table 2 and
Figure 4). Several observations can be made about the
results of the frequency estimates.

(1) The overall error in both the precision and accu-
racy of the frequency estimates for the two methods of
analysis was comparable for signals1 and2.
(2) Averaged over all data sets and over all low-
sensitivity data sets, both the accuracy and the preci-
sion of the signal3 frequency estimates derived from
HTFD-ML analysis were slightly improved relative to
peak analysis.
(3) Averaged over all data sets and over all low-
sensitivity data sets, the precision of the frequency
estimates was a reliable indicator of the accuracy of
the frequency estimates.
(4) For low-resolution data sets, the precision of the
frequency estimate was a poor indicator of its accu-
racy.
(5) For low-resolution data sets, the accuracy of the
frequency estimates derived from HTFD-ML analysis
were significantly improved relative to peak analysis.

A similar analysis was made of the amplitude
estimates: Table 2 (bottom) and Figure 4 (bottom).
Because there was no direct way to measure the accu-
racy of the amplitudes derived from peak integration,
the amplitude estimates of signals2 and 3 were ex-
pressed as ratios relative to the amplitude of signal1.
The following observations can be made concerning
the results of the amplitude estimates.
(1) Both for averages over all data sets and for aver-
ages over low-sensitivity data sets, the overall errors
in both the precision and accuracy of the amplitude
estimates derived from HTFD-ML analysis were about
half as large as those derived from peak analysis.
(2) For all data sets, the precision of the amplitude
error was a poor estimator of the accuracy of the
amplitude error.
(3) For low-resolution data sets, the overall error in
the accuracy of the amplitude estimates derived from
HTFD-ML analysis was substantially less than the
equivalent error estimates derived from peak analysis,
despite the fact that the precision estimates from the
two methods were comparable.

The relative performance of HTFD-ML analysis
relative to that of peak analysis could be measured,
not only in terms of the accuracy of the frequency and
amplitude results (parameter estimation), but also in
terms of the number of signals that could be detected
(signal recognition). Figure 5 displays a bar graph
showing the percentage of signals3 that were resolved
from signals2 averaged over all the low-resolution
(LR) and the low-sensitivity (LS) data sets. Although
the percentage of signals resolved by the two ap-
proaches was comparable for the low-sensitivity data
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sets, four times as many signals could be detected by
HTFD-ML analysis than by peak analysis when the
signals were poorly resolved.

It can be concluded from Figures 4 and 5 that
the relative accuracy of both the frequency and am-
plitude estimates afforded by HTFD-ML analysis, as
compared to peak analysis, is weakly affected by the
signal-to-noise ratio of the data but strongly influenced
by the frequency resolution of the data. Figure 6 il-
lustrates how the errors in frequency and amplitude
estimates change as a function of the separation in fre-
quency between signals2 and3. Each bar represents
the sum over all error estimates obtained for signals
of different signal-to-noise ratios. For the error esti-
mates of the frequencies (Figure 6, top), the precision
is a reliable indicator of the accuracy when the dif-
ference between signals2 and3 is greater than 9 Hz
(about half the linewidth of the two signals). For the
error estimates of the amplitudes (Figure 6, bottom),
the precision is a reliable indicator of the accuracy
only when the difference between signals2 and3 is
greater than 15 Hz (approximately the linewidth of the
two signals). The data clearly show that the error of
amplitude estimates derived from peak integration is
much more sensitive to the problem of spectral over-
lap than the error of frequency estimates derived from
peak interpolation. The data also show that the largest
gain obtained from HTFD-ML analysis occurs when
spectral overlap is significant.

Application to a series of 2D1H–15N T1 relaxation
data

This section presents an illustrative application of the
HTFD-ML approach to the concerted analysis of a
series of 2D1H–15N HSQC T1 relaxation experi-
ments carried out on a medium sized soluble protein
(the carbon monoxide ligated form of the monomeric
hemoglobin Component IV, GMH4CO, fromGlycera
dibranchiata, 147 amino acids). A contour plot of a
2D 1H–15N HSQC15N T1 spectrum measured at re-
laxation delay,T = 10 ms, is shown in Figure 7.
The spectrum was one of a series of ten experiments
collected at eightT values (T = 10 (twice), 60,
120, 200 (twice), 400, 800, and 1400 ms) in order
to measure15N T1 relaxation. The spectrum in Fig-
ure 7 contains over 200 signals. These arise from the
expected1H–15N pairs in the non-proline backbone
and the side chain amide residues of the major form
of the protein in solution and also, in part, from a

minor species (∼ 10%) with the heme inserted in an
alternative orientation.

A strength of any parametric approach to NMR
data analysis is that prior information about the data
can be used to set constraints on the analysis. The op-
timum approach to analyzing theT1 relaxation data is
to analyze all of the spectra in concert making use of
prior information about the experiment. Prior informa-
tion about the15N T1 relaxation data suggests adoption
of the following constraints:
(1) Each of the spectra should have the same num-
ber of signals. A given1H-15N signal in the 10 ms
spectrum should thus exist atapproximatelythe same
position in the other nine spectra. The set of ten such
signals will be referred to as ‘corresponding’ signals.
(2) The decay rates of corresponding signals should
be equal along both dimensions, i.e., corresponding
signals should have the same shape.
(3) Of the four classes of spectral parameters in the
model (frequency, phase, decay rate, and amplitude),
only the amplitude parameters are expected to change
significantly within a set of corresponding signals.

To implement these constraints, the ten data sets
were loaded into a single 3D matrix, in which each
plane of the matrix contained a single 2D spectrum.
The spectrum shown in Figure 7 was used as a ‘refer-
ence’ spectrum on which signal recognition by HTFD-
ML analysis was applied. Figure 8 displays the results
for a portion of the spectrum (that corresponding to
the dashed-line box in Figure 7). The data, the model,
and the residual for a crowded region of the spectrum
are shown as contour plots in the upper row and as
stacked plots in the lower row (Figure 8). The model
derived from the reference spectrum was used as the
starting point for constructing an initial model to fit
to the corresponding signals from the remaining nine
data sets. The amplitudes, frequencies, and decay rates
of the signals were allowed to vary from their initial
values obtained from the reference spectrum. After
this optimization step was complete, the weighted av-
erage of the decay rates was calculated for each set
of ten corresponding signals. The decay rates of all
ten signals were then fixed at the weighted average.
A final optimization step was performed in which the
decay amplitudes and frequencies of all signals in the
data sets (including the ones in the reference spectrum)
were allowed to vary while the decay rates were held
fixed at their previously optimized values. The time
required to perform the complete analysis of the ten
data sets containing a total of 2090 signals was about
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Figure 6. Error analysis of (top) frequency and (bottom) amplitude estimates obtained from HTFD-ML analysis and peak interpolation vs.
the resolution between signals2 and3. A set of 256 different synthetic data sets (2048 total data sets) were constructed as described in the
legend of Table 2. HTFD-ML analysis and peak interpolation were conducted on each of the data sets, and a summary of the errors of the
frequency estimates are displayed in the above figure. The errors in accuracy (left) and precision (right) of the estimates for signal3 are plotted
as a function of the separation between signals2 and3. Each bar represents the sum over all error estimates obtained for signals of different
signal-to-noise ratio.

3.4 hours on an SGI Indigo2 R8000 running a version
of IRIX 5.3.

Since it is known that the shapes of corresponding
peaks do not change as a function of the relaxation
delay, measurements of peak height are preferable
to measurements of peak integrals as a method for
extracting relaxation information. The left and right
portions of Figure 9 represent the decay of the nor-
malized amplitude of the signal assigned to lysine-33
(K33) as a function of the relaxation time derived, re-
spectively, from HTFD-ML analysis and peak height

analysis. The smooth curve drawn through the data
points is a theoretical least-squares fit of the data to a
mono-exponential decay function. Assuming that the
amplitudes do decay exponentially with relaxation, the
root mean distance of the data points from the theoret-
ical curve can be used as a measure of the precision
of the amplitudes. Visual inspection of the amplitude
versus relaxation time profiles of Figure 9 suggests
that the levels of precision obtained from HTFD-ML
analysis and peak height analysis are equivalent. In-
deed, the root mean distance of the relaxation profiles
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Figure 7. Contour plot of a 2D1H–15N HSQC experiment conducted uponGlycera dibranchiatacomponent IV monomeric hemoglobin
(GMH4). The data were measured at 750.13 MHz1H frequency with a pulse scheme that utilized gradients for sensitivity enhancement. The
spectrum was acquired with 200∗ 15N points int1 and 1024∗ 1H points int2. Further details of the experiment are contained in the methods
section. The spectrum was one of a series of experiments collected in order to measure15N T1 relaxation. For the spectrum shown in the above
figure, T = 10 ms. The time-domain data were digitally filtered alongt1 and t2 with a sine-squared bell window function shifted 40◦ and
70◦ respectively. After apodization, the data were zero-filled to a length of 512 points along the15N dimension and 2048 points along the1H
dimension. The portion of the1H spectrum downfield from the water signal was discarded to yield a final spectral resolution of 1024× 512
data points. The dashed box in the figure shows the portion of the 2D spectrum which is displayed in Figure 8.

averaged over all signals in the data set are statistically
equivalent (results not shown).

The results obtained from the analysis of the model
1D spectra indicated that the precision of amplitude
estimates is not always a reliable indicator of their
accuracy. Since the actual amplitude profiles were not
known for the experimental data shown in Figures 7–9,
the accuracy of the amplitude estimates obtained from
HTFD-ML analysis and peak analysis were compared
by an analysis of synthetic data sets with systematic
properties equivalent to those of the experimental data
set. The values for the amplitude, frequencies, and
decay rates obtained from HTFD-ML analysis of the

measured15N T1 relaxation data were used to con-
struct a reference spectrum and related spectra with
amplitude versus relaxation time profiles analogous
to the acquired spectrum. From this series of ten
synthetic 2D1H–15N spectra with known frequency
parameters and known15N T1 relaxation decay rates,
a series of eight data sets were constructed by adding
spectrometer noise to the spectra (see Methods sec-
tion). The eight data sets represent eight analogous
sets of ten synthetic spectra where each of the eight
data sets are identical in their systematic component
and differ only in their random (noise) component.
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Figure 8. Contour plots (top row) and stacked plots (bottom row) of a zoomed region of the data, model, and residual spectra associated with
HTFD-ML analysis of a 2D1H–15N spectrum ofGlycera dibranchiatacomponent IV monomeric hemoglobin (GMH4) acquired and processed
as explained in the legend of Figure 7. A zoomed (Zolnai et al., 1996) region of this spectrum is shown in the left panel (Data). The 2D spectrum
was subjected to HTFD-ML analysis using the algorithm described in the text. The corresponding region of the model spectrum obtained from
HTFD-ML analysis is shown in the middle panel (Model). The difference between the data and model spectrum is shown in the right panel
(Residual). The entire signal model constructed to fit the data consisted of 209 signals. The spectrum shown above was analyzed simultaneously
with nine other data sets as described in the text. The ten data sets collected to measure15N T1 relaxation corresponded to relaxation delay
valuesT of 10 (twice), 60, 120, 200 (twice), 400, 800, 1400 ms. The steps involved in the analysis of the entire relaxation series consisted of:
(a) Complete analysis including optimization of the frequency, decay rate, and phase parameters) of the reference data set shown in Figure 7
(209 signals).
(b) Optimization of the frequency, decay rate, and amplitude parameters for the other nine data sets (9∗209= 1881 signals) using the frequency
and decay rate values derived from step (a) as initial estimates.
(c) Optimization of the phase and amplitude parameters for all 2090 signals holding the frequency and decayrate estimates constant at the values
obtained from step (b).
(d) Calculation of the phase parameters along the acquisition dimension for each reference signal according to the weighted average of the
phase values obtained from all 10 data sets.
(e) Calculation of the decay rate parameters for each reference signal according to the weighted average of the decay rates obtained from all 10
data sets.
(f) Final optimization of the frequency and amplitude estimates for all 2090 signals holding the phase parameters constant at their values
obtained from step (d) and the decay rate parameters held constant at their values obtained from step (e).
The time required to perform the sequence of steps listed above was 3.4 hours on a Silicon Graphics R4000 processor running under IRIX 6.2
(128 MB of RAM).

The eight synthetic data sets (each of which con-
tained ten 2D1H–15N T1 relaxation spectra) were
analyzed by HTFDL-ML analysis in a manner iden-
tical to the analysis of the experimental data.15N
T1 relaxation rates were then extracted from the nor-
malized amplitude (or peak height) versus relaxation
time profiles associated with the1H–15N signals as-

signed to the backbone atoms of GMH4CO. Figure 10
shows the standard deviation of the measured15N T1
relaxation rates from their known values. The data
show that the average error in the accuracy of the
HTFD-ML derived15N T1 relaxation rates was about
three times less than the equivalent error of the peak
height-derived relaxation rates.
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Figure 9. Plots of the normalized HTFD-ML derived amplitude (left) and normalized peak height (right) of the signal assigned to lysine 33
(K33) of Glycera dibranchiatacomponent IV monomeric hemoglobin (GMH4) as a function of the relaxation delay (10 data points with 8
different relaxation delays). A series of15N T1 relaxation spectra were acquired, processed, and analyzed by HTFD-ML methods as described
in the legend of Figure 10. The smooth curve drawn through the points in each plot represents the non-linear least squares exponential fit to the
data points. An amplitude and peak-height profile of this kind was used in determining the15N relaxation time for each signal, present in the
1H–15N spectrum. The amplitude and peak-height profiles from the two sets of plots exhibited comparable precision.

Discussion

The results presented here demonstrate that the intro-
duction of a parametric model-fitting approach, such
as maximum likelihood analysis, can lead to a sig-
nificant improvement in the quality of NMR parame-
ters extracted from the data. Moreover, the approach
lends itself to automation and to statistical analy-
sis of the signals in multidimensional spectra. The
strengths of conventional Fourier analysis are that it
is fast, easy to implement, and produces a spectrum
in which the frequency and amplitude information are
localized. The localized nature of the absorption spec-
trum produced by Fourier procedures is essential to
its ability to process large multidimensional data sets
containing numerous signals. The HTFD-ML algo-
rithm described here complements the strengths of
Fourier analysis because of its ability to take into ac-
count the simultaneous contributions of all signals in a
crowded spectral region. Conventional Fourier analy-
sis assumes that the amplitude associated with a signal
can be measured from the height (or integral) of a
signal at its maximum point in the absorption spec-
trum. This assumption is equivalent to saying that the
interactions matrix of the signals in an NMR data set
is diagonally dominant: i.e., the interactions between
signals as measured by the off-diagonal elements of
the amplitude matrix are negligible in comparison

to the diagonal elements of the matrix. Because the
HTFD-ML approach constructs a theoretical model to
fit the data, it can construct and solve the entire interac-
tion matrix associated with a given number of signals
and their non-linear parameter values. The HTFD-
ML approach can thus take into account the non-
negligible contributions of the off-diagonal elements
of the interaction matrix.

The HTFD-ML approach is essentially a series of
approximations that make it practical to apply model
fitting methods to large multidimensional matrices
containing numerous signals. A rigorous approach to
model fitting of NMR data simultaneously considers
the contributions of all signals in the model and cal-
culates the projections of the model basis functions
over the entire data set. The large number of signals
and the large size of NMR data make this approach
impractical for D-dimensional NMR analysis, even
when the advanced computing power of commercially
available workstations is taken into account. By trans-
forming the time-domain models into the frequency
domain and applying a digital cutoff filter (see Fig-
ure 2), the ML approach is able to drastically reduce
both the size of the dot products and the size of
the interaction matrices required to perform spectral
deconvolution. Only those signals that overlap appre-
ciably in the spectrum are optimized simultaneously.
The overwhelming task of solving simultaneously an
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Figure 10. Standard deviations of measured15N T1 relaxation rates from their known values determined at each residue position by (top)
HTFD-ML analysis and (bottom) by peak-height analysis of a synthetic data set of eighty spectra. The synthetic data set was constructed as
follows (see Methods section for additional details). Values for the amplitude, frequencies, and decay rates obtained from HTFD-ML analysis
of the experimental15N T1 relaxation data set forGlycera dibranchiatacomponent IV monomeric hemoglobin (GMH4) were used to construct
a synthetic data set with analogous amplitude versus relaxation time profiles. To this series of ten synthetic, partially relaxed, 2D1H–15N
spectra, with known frequency parameters and known15N T1 relaxation decay rates, eight levels of spectrometer noise were added to generate
the 80 spectra used in this analysis.

enormous matrix of all signals in the model is thus
reduced to the manageable operation of solving a se-
ries of small signal networks sequentially. Results
from the previous section demonstrate that the HTFD-
ML approach implemented on a conventional desktop
computer can be used to analyze a series of 1024×512
2D NMR matrices containing more than 2000 signals
in a period of only several hours.

The results presented here show that amplitude
estimates are much more sensitive than frequency esti-
mates to the effects of spectral overlap. This observa-
tion can be rationalized by noting that the ‘center’ of a
peak (measured by peak interpolation) is less affected
by the presence of nearby signals than is the ‘tail’ of
a peak (measured during peak integration). This fact
in part explains why, when comparing signals with
equivalent line shapes, peak height measurements are
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more precise measurements of signal amplitude than
are peak integral measurements. Another explanation
for the greater precision of peak height measurements
comes from the fact that the peak-height method takes
into account prior information about the signals: i.e.,
information that they have identical line shapes. Peak
height measurements are thus affected only by the
imprecision in measuring signal intensity. Peak inte-
grals, on the other hand, do not take this information
into account and thus are affected by the impreci-
sion of measuring both intensities and line widths
(decay rates). The fixing of the decay rates of cor-
responding signals along both dimensions was thus
a necessary constraint to obtaining precise amplitude
estimates from the concerted analysis of the 2D15N
T1 relaxation data sets shown in Figures 7–9.

Results from analysis of the 1D model spectra
(Figures 3–6) indicated that improvement in frequency
and amplitude estimates from the incorporation of
model-fitting methods are modest for spectra con-
taining well separated signals. With all other factors
held constant, HTFD-ML analysis showed a signifi-
cant advantage over peak-height analysis in accurately
estimating the amplitudes of noisy signals only when
the separation between the signals in the spectrum
approached the linewidth of those signals. Similarly,
HTFD-ML analysis showed substantial improvements
in frequency estimates when separations between the
signals were approximately half of the linewidth of the
overlapping signals in the spectrum.

The results of the concerted analysis of the15N
T1 relaxation data demonstrate the practicality of ap-
plying the HTFD-ML method to extract quantitative
information about signal frequencies and amplitudes
from series ofD-dimensional NMR spectra. In ad-
dition to showing the greater accuracy that can be
achieved from use of the HTFD-ML algorithm, the
results suggest that attempts to quantify the accuracy
of amplitude measurements from repeated measure-
ments of relaxation times should be interpreted with
caution. The error estimates obtained from measuring
the standard deviation of amplitudes at the same mix-
ing time was found to provide a goodlower estimateof
the actual accuracy of the amplitude estimate. Such a
measurement yields therandom errorassociated with
a peak height measurement. This random error accu-
rately estimates the total error involved in the peak
height only for signals that are well separated. The
actual error involved in a peak height measurement for
an overlapped signal may be substantially greater than
this precision estimate owing to the presence of sys-

tematic error introduced by contributions to the peak
intensity from nearby signals.

The analysis of the15N T1 relaxation data also
highlight the importance that weighting functions play
in the processing of NMR spectra. The spectrum
shown in Figure 7 was produced by the application
of resolution enhancing window functions (see leg-
end) along both thet1 (15N) and t2 (1H) dimensions.
The equivalent spectrum produced by application of
exponential weighting functions prior to Fourier trans-
formation display a much greater degree of overlap
(data not shown). As a result of the application of non-
exponential digital filters, however, the line shapes of
the signals in the15N T1 relaxation spectrum (Fig-
ure 7) are markedly non-Lorentzian. This would pose
a challenge to model-fitting using a pure frequency-
domain approach, since a basis function or sum of
basis functions would have to be found that accurately
models the non-Lorentzian peak shapes exhibited in
the spectrum shown in Figure 7. In contrast, the
HTFD-ML approach employs a model that is com-
pletely independent of the digital filters applied during
Fourier transformation. This fact should allow the
HTFD-ML approach to be easily adapted to the future
analysis of NMR data where the data are sampled non-
uniformly along one or more of the indirectly-detected
dimensions.

The HTFD-ML algorithm described in this manu-
script approximated a NMR spectrum with increasing
number of signals until a residual criterion was satis-
fied (see steps 13 and 16 in the algorithm section). In
earlier work (Chylla and Markley, 1995), we imple-
mented a non-linear least squares approach that used
a more statistically rigorous termination criteria based
on the minimum description length (MDL) statistic.
The MDL is a model selection statistic that takes into
account not only the ‘goodness of fit’ of a model to
the data (chi square) but also the number of degrees
of freedom present in the model. In our earlier work,
an optimized model containing (n + x) signals was
judged to be a more ‘likely’ model than a model con-
taining n signals if and only if the reduction in chi
square brought about by introduction of thex addi-
tional signals was great enough to balance the penalty
incurred by any additional free parameters associated
with the added signals. The MDL statistic is appro-
priate when all of the systematic components present
in the data are accounted for by the model. In mul-
tidimensional NMR spectra, however, this condition
frequently does not hold due to the presence of weak
signals produced by incomplete cancellation of un-



297

desired magnetization pathways and other non-ideal
conditions. The MDL statistic used as a termination
criteria in spectra with these nuisance signals present
will result in the time-consuming optimization of very
weak signals that are of no interest. It is worth not-
ing, however, that for many experiments the use of the
MDL statistic is an appropriate and more statistically
rigorous termination criterion.

The algorithm presented here has been found to be
applicable to a wide range of spectra. Its most seri-
ous limitation stems from its parametric nature: the
models employed must fully describe all of the NMR
transitions that give rise to the signal. The algorithm
thus has success in analyzing spectra whose signals are
modeled accurately by a digitally filtered and trans-
formed exponentially decaying sinusoid. Such spectra
include 1D spectra,D-dimensional HMQC and HSQC
spectra, and NOESY spectra of large molecules. The
HTFD-ML approach currently is less suited to mod-
eling TOCSY spectra and NOESY spectra of small
molecules, where the peak shapes reflect the contribu-
tions of numerous pathways of magnetization transfer.
To accurately model these spectra in the future, it
will be necessary to employ more sophisticated ana-
lytical models. This should not pose great difficulties,
however. Even in its present form, the HTFD-ML al-
gorithm represents a significant advance toward the
goal of completely automating the pathway from the
acquisition of NMR data to the extraction and analysis
of primary NMR parameters.
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